Pouvez-vous présenter le traitement des données ?

En l'absence d'un processus de traitement des données, les entreprises ne peuvent pas accéder à des volumes considérables de données qui les aideraient à acquérir un avantage concurrentiel et à extraire de la connaissance sur leurs ventes, leur efficacité au niveau des stratégies marketing et les besoins de leurs consommateurs. Les entreprises, grandes ou petites, doivent impérativement comprendre la nécessité du traitement des données.

Pouvez-vous présenter le traitement des données ?

Le traitement des données est exécuté dès que celles-ci sont collectées, en vue de les traduire en information exploitable. Le traitement des données est généralement effectué par un data scientist (ou une équipe de data scientists). Il est important qu'il soit effectué correctement afin de ne pas impacter négativement le produit final ou la sortie des données.

Le traitement des données commence avec les données brutes : il les convertit sous une forme plus lisible (graphiques, documents de texte, etc.) en leur donnant le format et contexte nécessaires pour qu'elles puissent être interprétées par les systèmes IT et utilisées par les employés à l'échelle de l'entreprise.

Workflow du traitement des données en six étapes

1. Collecte des données

La collecte des données est la première étape du traitement des données. Les données proviennent de toutes les sources disponibles, y compris les data lakes et les data warehouses. Il est important que les sources de données disponibles soient fiables et correctement structurées pour que les données importées (et utilisées par la suite sous forme d'information ou de connaissance) soient de la meilleure qualité possible.

Télécharger The Definitive Guide to Data Quality maintenant
TÉLÉCHARGER

2. Préparation des données

Après la collecte des données suit la préparation des données. La préparation des données, parfois appelée « pré-traitement », est l’étape pendant laquelle les données brutes sont nettoyées et structurées en vue de l'étape suivante du traitement des données. Pendant cette phase de préparation, les données brutes sont vérifiées avec soin afin de déceler d'éventuelles erreurs. L'objectif est d'éliminer les données de mauvaise qualité (redondantes, incomplètes ou incorrectes) et de commencer à créer les données de haute qualité qui peuvent garantir la qualité de votre environnement de Business intelligence.

3. Importation des données

Les données propres sont ensuite importées dans leur emplacement de destination (par exemple, un système CRM tel que Salesforce ou un data warehouse tel que Redshift), et converties vers un format supporté par cette destination. L'importation des données est la première étape au cours de laquelle les données brutes commencent à se transformer en information exploitable.

4. Traitement des données

Pendant cette étape, les données importées dans le système lors de l'étape précédente sont traitées pour interprétation. Le traitement s'effectue par exécution d'algorithmes de machine learning. Toutefois, le processus peut présenter certaines variations en fonction de la source des données (data lakes, réseaux sociaux, équipements connectés, etc.) et de l'utilisation prévue pour ces données (analyse de modèles publicitaires, diagnostic médical à partir d'équipements connectés, détermination des besoins des clients, etc.).

5. Sortie et interprétation des données

Lors de l'étape de sortie/interprétation, les données deviennent exploitables par tous les employés, y compris ceux qui n'ont pas les compétences d'un data scientist. Elles sont converties, deviennent lisibles et sont généralement présentées sous forme de graphiques, vidéos, photos, texte sans enrichissements, etc.Les employés disposent maintenant d'un accès en libre-service aux données nécessaires à leurs projets d' analytique.

6. Stockage des données

La dernière étape du traitement des données est le stockage. Lorsque toutes les données ont été traitées, elles sont stockées pour une utilisation ultérieure (certaines données peuvent être utilisées immédiatement). Le stockage correct des données est généralement une exigence de conformité des directives telles que le Règlement général sur la protection des données (RGPD) imposé par l'Union européenne. Lorsque les données sont correctement stockées, les employés peuvent y accéder facilement et rapidement.

L'avenir du traitement des données

L'avenir du traitement des données est dans le cloud. La technologie cloud s'appuie sur les méthodes actuelles de traitement des données, améliore leurs performances et augmente leur efficacité. Avec des données de meilleure qualité et accessibles plus rapidement, chaque entreprise peut traiter de plus gros volumes et en extraire des connaissances précieuses.

Télécharger Why Your Next Data Warehouse Should Be in the Cloud maintenant
TÉLÉCHARGER

En migrant leursbig data vers le cloud, les entreprises bénéficient d'avantages considérables. Les technologies big data en cloud permettent aux entreprises d'agréger leurs différentes plates-formes en un seul système facilement adaptable. Chaque fois qu'un logiciel est modifié ou mis à jour (comme c'est souvent le cas dans l'univers des big data), la technologie cloud intègre automatiquement les nouveautés dans l'ancienne version.

Le traitement des données en cloud n'est absolument pas réservé aux grandes sociétés : les PME/TPE peuvent également en retirer d’importants avantages. Les plates-formes cloud sont souvent peu coûteuses et offrent la flexibilité nécessaire pour compléter et étendre les capacités de la solution en parallèle avec la croissance de l'entreprise. Et elles donnent aux entreprises la possibilité d'évoluer sans avoir à consentir d'investissements excessifs.

Du traitement des données à l'analytique

Les big data modifient les pratiques des entreprises, grandes ou petites, mais les avantages concurrentiels qui leur sont associés exigent une stratégie de traitement des données bien pensée. Les six étapes du traitement des données décrites ci-dessus ne devraient pas changer significativement, mais le cloud a bénéficié d'avancées technologiques considérables et propose dès à présent les méthodes les plus avancées, les plus performantes et les moins coûteuses pour ces opérations.

Et ensuite ? Il est temps de mettre vos données au service de vos activités. Une fois traitées, les données peuvent être analysées efficacement dans un contexte de Business Intelligence. Et avec un environnement d' analyse des données, efficace, vous pourrez prendre des décisions plus rapides et plus avisées. Pour plus de détails, consultez ce rapport Talend : Talend’s Best Practices Report: Operationalizing and Embedding Analytics for Action.

| Last Updated: December 20th, 2018